Author :
Köppen, Mario ; Franke, Katrin ; Vicente-Garcia, Raul
Abstract :
The expedience of today´s image-processing applications is no longer based on the performance of a single algorithm alone. These systems appear to be complex frameworks with a lot of sub-tasks that are solved by specific algorithms, adaptation procedures, data handling, scheduling, and parameter choices. The venture of using computational intelligence (CI) in such a context, thus, is not a matter of a single approach. Among the great choice of techniques to inject CI in an image-processing framework, the primary focus of this presentation will be on the usage of so-called tiny-GAs. This stands for an evolutionary procedure with low efforts, i.e. small population size (like 10 individuals), little number of generations, and a simple fitness. Obviously, this is not suitable for solving highly complex optimization tasks, but the primary interest here is not the best individual´s fitness, but the fortune of the algorithm and its population, which has just escaped the Monte-Carlo domain after random initialization. That this approach can work in practice will be demonstrated by means of selected image-processing applications, especially in the context of linear regression and line fitting; evolutionary post processing of various clustering results, in order to select a most suitable one by similarity; and classification by the fitness values obtained after a few generations
Keywords :
genetic algorithms; image processing; computational intelligence; evolutionary computation; genetic algorithm; image processing; tiny GA; Application software; CMOS image sensors; Cameras; Charge-coupled image sensors; Computational intelligence; Concurrent computing; Evolutionary computation; Filters; Humans; Image processing;