Title :
Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
Author :
Zafeiriou, S. ; Tefas, A. ; Buciu, I. ; Pitas, I.
Author_Institution :
Dept. of Informatics, Aristotle Univ. of Thessaloniki
fDate :
5/1/2006 12:00:00 AM
Abstract :
In this paper, two supervised methods for enhancing the classification accuracy of the Nonnegative Matrix Factorization (NMF) algorithm are presented. The idea is to extend the NMF algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classes in a discriminant manner. The first method employs discriminant analysis in the features derived from NMF. In this way, a two-phase discriminant feature extraction procedure is implemented, namely NMF plus Linear Discriminant Analysis (LDA). The second method incorporates the discriminant constraints inside the NMF decomposition. Thus, a decomposition of a face to its discriminant parts is obtained and new update rules for both the weights and the basis images are derived. The introduced methods have been applied to the problem of frontal face verification using the well-known XM2VTS database. Both methods greatly enhance the performance of NMF for frontal face verification
Keywords :
face recognition; feature extraction; matrix decomposition; visual databases; XM2VTS database; frontal face verification; linear discriminant analysis; nonnegative matrix factorization; supervised methods; two-phase discriminant feature extraction; Computer vision; Face detection; Face recognition; Feature extraction; Humans; Image databases; Independent component analysis; Linear discriminant analysis; Pattern recognition; Principal component analysis; Frontal face verification; linear discriminant analysis (LDA); nonnegative matrix factorization (NMF); subspace techniques; Algorithms; Artificial Intelligence; Biometry; Discriminant Analysis; Face; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Pattern Recognition, Automated;
Journal_Title :
Neural Networks, IEEE Transactions on
DOI :
10.1109/TNN.2006.873291