• DocumentCode
    928707
  • Title

    The fast decoding of Reed-Solomon codes using Fermat transforms (Corresp.)

  • Author

    Reed, I. ; Treiu-Kien Truong ; Welch, L.

  • Volume
    24
  • Issue
    4
  • fYear
    1978
  • fDate
    7/1/1978 12:00:00 AM
  • Firstpage
    497
  • Lastpage
    499
  • Abstract
    It is shown that \\sqrt [8]{2} is an element of order 2^{n+4} in GF(F_{n}) , where F_{n}=2^{2^{n}}+1 is a Fermat prime for n=3,4 . Hence it can be used to define a fast Fourier transform (FFT) of as many as 2^{n+4} symbols in GF(F_{n}) . Since \\sqrt [8]{2} is a root of unity of order 2^{n+4} in GF(F_{n}) , this transform requires fewer muitiplications than the conventional FFT algorithm. Moreover, as Justesen points out [1], such an FFT can be used to decode certain Reed-Solomon codes. An example of such a transform decoder for the case n=2 , where \\sqrt {2} is in GF(F_{2})=GF(17) , is given.
  • Keywords
    Decoding; Number-theoretic transforms; Reed-Solomon codes; Contracts; Decoding; Error correction codes; Fast Fourier transforms; Galois fields; Information science; Linear code; Mathematics; Probes; Reed-Solomon codes;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1978.1055902
  • Filename
    1055902