DocumentCode :
928707
Title :
The fast decoding of Reed-Solomon codes using Fermat transforms (Corresp.)
Author :
Reed, I. ; Treiu-Kien Truong ; Welch, L.
Volume :
24
Issue :
4
fYear :
1978
fDate :
7/1/1978 12:00:00 AM
Firstpage :
497
Lastpage :
499
Abstract :
It is shown that \\sqrt [8]{2} is an element of order 2^{n+4} in GF(F_{n}) , where F_{n}=2^{2^{n}}+1 is a Fermat prime for n=3,4 . Hence it can be used to define a fast Fourier transform (FFT) of as many as 2^{n+4} symbols in GF(F_{n}) . Since \\sqrt [8]{2} is a root of unity of order 2^{n+4} in GF(F_{n}) , this transform requires fewer muitiplications than the conventional FFT algorithm. Moreover, as Justesen points out [1], such an FFT can be used to decode certain Reed-Solomon codes. An example of such a transform decoder for the case n=2 , where \\sqrt {2} is in GF(F_{2})=GF(17) , is given.
Keywords :
Decoding; Number-theoretic transforms; Reed-Solomon codes; Contracts; Decoding; Error correction codes; Fast Fourier transforms; Galois fields; Information science; Linear code; Mathematics; Probes; Reed-Solomon codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1978.1055902
Filename :
1055902
Link To Document :
بازگشت