DocumentCode :
931147
Title :
Lower bounds for constant weight codes
Author :
Graham, R.L. ; Sloane, N. A J
Volume :
26
Issue :
1
fYear :
1980
fDate :
1/1/1980 12:00:00 AM
Firstpage :
37
Lastpage :
43
Abstract :
Let A(n,2\\delta ,w) denote the maximum number of codewords in any binary code of length n , constant weight w , and Hamming distance 2\\delta Several lower bounds for A(n,2\\delta ,w) are given. For w and \\delta fixed, A(n,2\\delta ,w) \\geq n^{W-\\delta +l}/w! and A(n,4,w)\\sim n^{w-l}/w! as n \\rightarrow \\infty . In most cases these are better than the "Gilbert bound." Revised tables of A(n,2 \\delta ,w) are given in the range n \\leq 24 and \\delta \\leq 5 .
Keywords :
Coding; Algebra; Entropy; Equations; Frequency; Hamming distance; Information geometry; Information theory; Mechanical variables measurement; Probability distribution; Quantum mechanics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1980.1056141
Filename :
1056141
Link To Document :
بازگشت