DocumentCode :
931509
Title :
A method for computing addition tables in GF(p^n) (Corresp.)
Author :
Imamura, Kyoki
Volume :
26
Issue :
3
fYear :
1980
fDate :
5/1/1980 12:00:00 AM
Firstpage :
367
Lastpage :
369
Abstract :
Conway showed that a table of Zech\´s logarithms is useful to perform addition in GF (p^{n}) when the elements are represented as powers of a primitive element. The Zech\´s logarithm Z(x) of x is defined by the equation \\alpha ^{z(x)}=\\alpha ^{x} + 1 , where \\alpha is a primitive element, zero is written as \\alpha ^{\\ast } , and x=\\ast ,O,1, \\cdots ,p^{n}-2 . A simple algorithm for making a table of Zech\´s logarithms is presented.
Keywords :
Cyclic codes; Decoding; Galois fields; Codes; Decoding; Equations; Galois fields; Polynomials;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1980.1056178
Filename :
1056178
Link To Document :
بازگشت