DocumentCode :
931710
Title :
Combinatorial properties of good codes for binary autoregressive sources (Corresp.)
Author :
Delsarte, Philippe ; Piret, Philippe
Volume :
26
Issue :
3
fYear :
1980
fDate :
5/1/1980 12:00:00 AM
Firstpage :
341
Lastpage :
345
Abstract :
Let M be a binary autoregressive source to be encoded within a specified Hamming distortion \\delta . A binary n -tuple is called \\sigma -central if it is at distance \\leq n(\\delta + \\sigma ) from at least 2^{nH(\\delta - \\sigma )} typical sequences produced by the source M . It is first shown that, in the region where the Shannon rate-distortion bound is achieved, there exist "good codes" consisting only of \\sigma -central words. Next, the characterization problem is studied; the basic conjecture is that a central sequence is well-characterized by its level, which is the Hamming weight of an image sequence. The problem is solved for the memoryless source. In general, if N(k,r) is defined to be the mean number of typical n -tuples at distance \\leq r = n \\delta from the n -tuples of level k=n \\xi , then it is shown that n^{-l} \\log N(k,r) becomes arbitrarily close to H(\\delta ) for an explicitly determined unique value of \\xi .
Keywords :
Autoregressive processes; Rate-distortion theory; Binary codes; Distortion measurement; Entropy; Feedback circuits; Hamming distance; Hamming weight; Image sequences; Information theory; Rate-distortion;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1980.1056199
Filename :
1056199
Link To Document :
بازگشت