Title :
Partial-update NLMS algorithms with data-selective updating
Author :
Werner, Stefan ; De Campos, Marcello L R ; Diniz, Paulo S R
Author_Institution :
Signal Process. Lab., Helsinki Univ. of Technol., Espoo, Finland
fDate :
4/1/2004 12:00:00 AM
Abstract :
In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS algorithm. Thereafter, the ideas of the partial-update NLMS-type algorithms found in the literature are incorporated in the framework of set-membership filtering, from which data-selective NLMS-type algorithms with partial-update are derived. The new algorithms, referred to herein as the set-membership partial-update normalized least-mean square (SM-PU-NLMS) algorithms, combine the data-selective updating from set-membership filtering with the reduced computational complexity from partial updating. A thorough discussion of the SM-PU-NLMS algorithms follows, whereby we propose different update strategies and provide stability analysis and closed-form formulae for excess mean-squared error (MSE). Simulation results verify the analysis for the PU-NLMS algorithm and the good performance of the SM-PU-NLMS algorithms in terms of convergence speed, final misadjustment, and computational complexity.
Keywords :
adaptive signal processing; computational complexity; filtering theory; least mean squares methods; statistical analysis; adaptation algorithm; computational complexity; data-selective updating; mean-squared convergence analysis; normalized least mean square algorithm; order statistics; set-membership filtering; stability analysis; white input signal; Algorithm design and analysis; Analytical models; Closed-form solution; Computational complexity; Computational modeling; Convergence; Error correction; Filtering algorithms; Signal analysis; Stability analysis;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2004.823483