DocumentCode :
933176
Title :
State smoothing in Markov-switching time-frequency GARCH models
Author :
Abramson, Ari ; Cohen, Israel
Author_Institution :
Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel
Volume :
13
Issue :
6
fYear :
2006
fDate :
6/1/2006 12:00:00 AM
Firstpage :
377
Lastpage :
380
Abstract :
In this letter, we propose a state smoothing algorithm for path-dependent Markov-switching generalized autoregressive conditional heteroscedasticity (GARCH) processes. Our smoothing technique extends the forward-backward recursions of Chang and Hancock and the stable backward recursion of Lindgren, Askar and Derin. We derive two recursive steps for the evaluation of conditional densities of future observations. The first step is an upward recursion that manipulates the future observations for the evaluation of their conditional densities, and the second step is a backward recursion that integrates over the possible future paths. Experimental results demonstrate the improvement in performance, compared to using causal estimation.
Keywords :
Markov processes; autoregressive processes; recursive estimation; smoothing methods; time-frequency analysis; forward-backward recursion; generalized autoregressive conditional heteroscedasticity process; path-dependent Markov-switching; stable backward recursion; state smoothing algorithm; time-frequency GARCH model; Econometrics; Economic forecasting; Hidden Markov models; Predictive models; Recursive estimation; Smoothing methods; Speech enhancement; State estimation; Switches; Time frequency analysis; Forward–backward recursions; generalized autoregressive conditional heteroscedasticity (GARCH); stable backward recursion; state smoothing;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2006.871708
Filename :
1632072
Link To Document :
بازگشت