• DocumentCode
    933774
  • Title

    A new class of codes meeting the Griesmer bound

  • Author

    Helleseth, Tor ; Van Tilborg, Henk C A

  • Volume
    27
  • Issue
    5
  • fYear
    1981
  • fDate
    9/1/1981 12:00:00 AM
  • Firstpage
    548
  • Lastpage
    555
  • Abstract
    An infinite sequence of k -dimensional binary linear block codes is constructed with parameters n=2^{k}+2^{k-2}-15,d=2^{k-1}+2^{k-3}-8,k \\geq 7 . For k \\geq 8 these codes are unique, while there are five nonisomorphic codes for k=7 . By shortening these codes in an appropriate way, one finds codes meeting the Griesmer bound for 2^{k-1}+2^{k-3}-15 \\leq d \\leq 2^{k-1}+2^{k-3}-8; k \\geq 7 .
  • Keywords
    Linear codes; Multidimensional codes; Block codes; Linear code; Mathematics;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1981.1056405
  • Filename
    1056405