DocumentCode :
933774
Title :
A new class of codes meeting the Griesmer bound
Author :
Helleseth, Tor ; Van Tilborg, Henk C A
Volume :
27
Issue :
5
fYear :
1981
fDate :
9/1/1981 12:00:00 AM
Firstpage :
548
Lastpage :
555
Abstract :
An infinite sequence of k -dimensional binary linear block codes is constructed with parameters n=2^{k}+2^{k-2}-15,d=2^{k-1}+2^{k-3}-8,k \\geq 7 . For k \\geq 8 these codes are unique, while there are five nonisomorphic codes for k=7 . By shortening these codes in an appropriate way, one finds codes meeting the Griesmer bound for 2^{k-1}+2^{k-3}-15 \\leq d \\leq 2^{k-1}+2^{k-3}-8; k \\geq 7 .
Keywords :
Linear codes; Multidimensional codes; Block codes; Linear code; Mathematics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1981.1056405
Filename :
1056405
Link To Document :
بازگشت