DocumentCode :
935205
Title :
Maximum likelihood estimation for multivariate observations of Markov sources
Author :
Liporace, Louis A.
Volume :
28
Issue :
5
fYear :
1982
fDate :
9/1/1982 12:00:00 AM
Firstpage :
729
Lastpage :
734
Abstract :
Parameter estimation for multivariate functions of Markov chains, a class of versatile statistical models for vector random processes, is discussed. The model regards an ordered sequence of vectors as noisy multivariate observations of a Markov chain. Mixture distributions are a special case. The foundations of the theory presented here were established by Baum, Petrie, Soules, and Weiss. A powerful representation theorem by Fan is employed to generalize the analysis of Baum, {em et al.} to a larger class of distributions.
Keywords :
Markov processes; maximum-likelihood (ML) estimation; Density functional theory; Maximum likelihood estimation; Parameter estimation; Random processes; Statistical distributions; Symmetric matrices;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1982.1056544
Filename :
1056544
Link To Document :
بازگشت