DocumentCode :
935652
Title :
Achievable rates for multiple descriptions
Author :
Gamal, Abbas El ; Cover, Thomas M.
Volume :
28
Issue :
6
fYear :
1982
fDate :
11/1/1982 12:00:00 AM
Firstpage :
851
Lastpage :
857
Abstract :
Consider a sequence of independent identically distributed (i.i.d.) random variables X_{l},X_{2}, \\cdots , X_{n} and a distortion measure d(X_{i},\\hat{X}_{i}) on the estimates \\hat{X}_{i} of X_{i} . Two descriptions i(X)\\in \\{1,2, \\cdots ,2^{nR_{1}} \\} and j(X) \\in \\{1,2, \\cdots ,2^{nR_{2}} \\} are given of the sequence X=(X_{1}, X_{2}, \\cdots ,X_{n}) . From these two descriptions, three estimates (i(X)), X2(j(X)) , and \\hat{X}_{O}(i(X),j(X)) are formed, with resulting expected distortions E frac{1/n} \\sum ^{n}_{k=1} d(X_{k}, \\hat{X}_{mk})=D_{m}, m=0,1,2. We find that the distortion constraints D_{0}, D_{1}, D_{2} are achievable if there exists a probability mass distribution p(x)p(\\hat{x}_{1},\\hat{x}_{2},\\hat{x}_{0}|x) with Ed(X,\\hat{x}_{m})\\leq D_{m} such that R_{1}> I(X;\\hat{X}_{1}), R_{2}> I(X;\\hat{X}_{2}), where I(\\cdot) denotes Shannon mutual information. These rates are shown to be optimal for deterministic distortion measures.
Keywords :
Rate-distortion theory; Communication networks; Costs; Distortion measurement; Helium; Information theory; Mutual information; Random variables; Stochastic processes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1982.1056588
Filename :
1056588
Link To Document :
بازگشت