• DocumentCode
    935971
  • Title

    Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function

  • Author

    Kieffer, John C.

  • Volume
    29
  • Issue
    1
  • fYear
    1983
  • fDate
    1/1/1983 12:00:00 AM
  • Firstpage
    42
  • Lastpage
    47
  • Abstract
    It is desired to encode a random variable X using an N -level quantizer Q to minimize the expected distortion E \\rho(|X-Q(X))I) , where the error weighting function \\rho is convex, strictly increasing and continuously differentiable. It is shown that if X has a log-concave density, then there exists a unique locally optimal quantizer Q \\ast and Lloyd\´s Method I may be used to find Q \\ast . Trushkin had earlier shown this result for the error weighting functions \\rho (t) \\equiv t and \\rho(t) euiv t^{2} .
  • Keywords
    Information theory; Mathematics; Probability density function; Random variables; Statistics;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1983.1056622
  • Filename
    1056622