DocumentCode :
936520
Title :
On the inequivalence of generalized Preparata codes
Author :
Kantor, William M.
Volume :
29
Issue :
3
fYear :
1983
fDate :
5/1/1983 12:00:00 AM
Firstpage :
345
Lastpage :
348
Abstract :
If m is odd and \\sigma /\\in Aut GF(2^{m}) is such that x \\rightarrow x^{\\sigma ^{2}-1} is 1-1 , there is a [2^{m+1}-1,2^{m+l}-2m-2] nonlinear binary code P(\\sigma ) having minimum distance 5. All the codes P(\\sigma ) have the same distance and weight enumerators as the usual Preparata codes (which rise as P(\\sigma ) when x^{\\sigma }=x^{2}) . It is shown that P(\\sigma ) and P(\\tau ) are equivalent if and only if \\tau =\\sigma ^{\\pm 1} , and Aut P(\\sigma ) is determined.
Keywords :
Error-correction coding; Binary codes; Linear code; Mathematics; Retirement; Terrorism;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1983.1056676
Filename :
1056676
Link To Document :
بازگشت