DocumentCode :
938403
Title :
Performance of data-dependent superimposed training without cyclic prefix
Author :
McLernon, D.C. ; Alameda-Hernández, E. ; Orozco-Lugo, A.G. ; Lara, M.M.
Author_Institution :
Sch. of Electron. & Electr. Eng., Univ. of Leeds, UK
Volume :
42
Issue :
10
fYear :
2006
fDate :
5/11/2006 12:00:00 AM
Firstpage :
604
Lastpage :
606
Abstract :
A recent improvement in superimposed training for channel estimation, where the training sequence is actually added to the information data, is called data-dependent superimposed training (DDST). Here we show (theoretically and via simulations) that the performance of DDST (both for channel estimation and equalisation) may suffer minimal degradation when implemented without the use of a cyclic prefix (which carries only redundant information).
Keywords :
channel estimation; equalisers; DDST; channel estimation; cyclic prefix; data-dependent superimposed training; degradation; equalisation; information data; training sequence;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:20060127
Filename :
1633584
Link To Document :
بازگشت