• DocumentCode
    940133
  • Title

    Phase normalised m-sequences with the inphase decimation property {m(k)}={m(2k)}

  • Author

    Weinrichter, H. ; Surböck, F.

  • Author_Institution
    Technischen Universitÿt Wien, Institut fÿr Niederfrequenztechnik, Wien, Austria
  • Volume
    12
  • Issue
    22
  • fYear
    1976
  • Firstpage
    590
  • Lastpage
    591
  • Abstract
    The inphase decimation property of a binary sequence {f(k)} is defined such that f(k)=f(2k) for all k=0, 1, 2,¿ Given a primitive generator polynomial G(D) of degree r with its even and odd parts Ge(D) and Go(D), it is shown that there is a unique version of the corresponding m-sequence with this inphase decimation property, resulting as Ge(D)/G(D) if r is odd and Go(D)/G(D) if r is even. An m-sequence in such a phase position is termed the phase normalised version.
  • Keywords
    binary sequences; binary sequence; inphase decimation property; phase normalised m-sequences; primitive generator polynomial;
  • fLanguage
    English
  • Journal_Title
    Electronics Letters
  • Publisher
    iet
  • ISSN
    0013-5194
  • Type

    jour

  • DOI
    10.1049/el:19760449
  • Filename
    4240181