• DocumentCode
    940201
  • Title

    A logic nanotechnology featuring strained-silicon

  • Author

    Thompson, Scott E. ; Armstrong, Mark ; Auth, Chis ; Cea, Steve ; Chau, Robert ; Glass, Glenn ; Hoffman, Thomas ; Klaus, Jason ; Ma, Zhiyong ; Mcintyre, Brian ; Murthy, Anand ; Obradovic, Borna ; Shifren, Lucian ; Sivakumar, Sam ; Tyagi, Sunit ; Ghani, Tah

  • Author_Institution
    Intel Corp., Hillsboro, OR, USA
  • Volume
    25
  • Issue
    4
  • fYear
    2004
  • fDate
    4/1/2004 12:00:00 AM
  • Firstpage
    191
  • Lastpage
    193
  • Abstract
    Strained-silicon (Si) is incorporated into a leading edge 90-nm logic technology . Strained-Si increases saturated n-type and p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) drive currents by 10 and 25%, respectively. The process flow consists of selective epitaxial Si1-xGex in the source/drain regions to create longitudinal uniaxial compressive strain in the p-type MOSFET. A tensile Si nitride-capping layer is used to introduce tensile uniaxial strain into the n-type MOSFET and enhance electron mobility. Unlike past strained-Si work: 1) the amount of strain for the n-type and p-type MOSFET can be controlled independently on the same wafer and 2) the hole mobility enhancement in this letter is present at large vertical electric fields, thus, making this flow useful for nanoscale transistors in advanced logic technologies.
  • Keywords
    CMOS logic circuits; Ge-Si alloys; MOSFET; electron mobility; hole mobility; nanoelectronics; semiconductor epitaxial layers; silicon; 90 nm; CMOS logic; MOSFET drive currents; Si-SiGe; advanced logic technologies; electron mobility; hole mobility; logic nanotechnology; longitudinal uniaxial compressive strain; n-type MOSFET; nanoscale transistors; p-type MOSEFT; saturated n-type metal-oxide-semiconductor field-effect transistors; saturated p-type metal-oxide-semiconductor field-effect transistors; selective epitaxial Si1-xGex; source-drain regions; strained-silicon; tensile silicon nitride-capping layer; tensile uniaxial strain; vertical electric fields; Capacitive sensors; Electron mobility; FETs; Logic; MOSFETs; Nanotechnology; Silicon; Strain control; Transistors; Uniaxial strain;
  • fLanguage
    English
  • Journal_Title
    Electron Device Letters, IEEE
  • Publisher
    ieee
  • ISSN
    0741-3106
  • Type

    jour

  • DOI
    10.1109/LED.2004.825195
  • Filename
    1278552