DocumentCode :
940740
Title :
Nonparametric estimation algorithms based on input quantization (Corresp.)
Author :
Lee, C.C. ; Longley, L.A.
Volume :
31
Issue :
5
fYear :
1985
fDate :
9/1/1985 12:00:00 AM
Firstpage :
682
Lastpage :
688
Abstract :
The estimation of a parameter of a white discrete-time process with arbitrary statistical distribution is considered, using quantized samples. Because of the quantization the necessary statistical modeling is simplified to the measurement of a few parameters. Under the assumption that the parameter space is a small interval, a locally optimum estimator (LOE) is derived. It is shown that this estimator has a desirable parallel structure for implementation by simple digital hardware. The idea is then extended to the case of a large parameter space for which a G -estimator consisting of an array of identical LOE\´s is presented. To analyze the performance of this scheme, the estimation of the location parameter of a continuous, unimodal, and symmetric distribution is studied. In this case it is proved that the G -estimator extends the optimality of a single LOE to the larger parameter space.
Keywords :
Nonparametric estimation; Parameter estimation; Quantization (signal); Signal quantization; Estimation error; Estimation theory; Hardware; Notice of Violation; Parameter estimation; Performance analysis; Quantization; Sampling methods; Signal processing; Statistical distributions;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1985.1057095
Filename :
1057095
Link To Document :
بازگشت