• DocumentCode
    941040
  • Title

    Testing for numerical computations

  • Author

    Karpovsky, Mark

  • Author_Institution
    State University of New York at Binghamton, Computer Science Department, School of Advanced Technology, Binghamton, USA
  • Volume
    127
  • Issue
    2
  • fYear
    1980
  • fDate
    3/1/1980 12:00:00 AM
  • Firstpage
    69
  • Lastpage
    76
  • Abstract
    We consider the problem of error detection in programs or specialised devices computing real functions f(x), where the argument x is represented in binary form. For error detection we use the linear check inequalities |¿¿¿¿¿¿T f(x ¿¿ ¿¿) ¿¿ C| ¿¿ ¿¿, where ¿¿ ¿¿ 0 is some given small constant, ¿¿denotes componentwise addition mod 2 of binary vectors, T is some set of binary vectors and C is a constant. A method for the construction of a minimal check set T and constant C for the given f(x) and ¿¿ is proposed. This method is based on the techniques of Walsh transforms and least-absolute-error polynomial approximation. Several important examples of optimal checks for programs computing exponential, logarithmic and trigonometric functions will be given.
  • Keywords
    program testing; Walsh transforms; check inequalities; error detection; exponential functions; logarithmic functions; minimal check set; numerical computations; polynomial approximation; program testing; programs; real functions; trigonometric functions;
  • fLanguage
    English
  • Journal_Title
    Computers and Digital Techniques, IEE Proceedings E
  • Publisher
    iet
  • ISSN
    0143-7062
  • Type

    jour

  • DOI
    10.1049/ip-e.1980.0013
  • Filename
    4647553