DocumentCode :
941332
Title :
Normal basis of finite field GF(2^m) (Corresp.)
Author :
Pei, Din Y. ; Wang, Charles C. ; Omura, Jim K.
Volume :
32
Issue :
2
fYear :
1986
fDate :
3/1/1986 12:00:00 AM
Firstpage :
285
Lastpage :
287
Abstract :
Massey and Omura recently developed a new multiplication algorithm for Galois fields based on the normal basis representation. This algorithm shows a much simpler way to perform multiplication in finite field than the conventional method. The necessary and sufficient conditions are presented for an element to generate a normal basis in the field GF (2^{m}) , where m = 2^{k}p^{n} and p^{n} has two as a primitive root. This result provides a way to find a normal basis in the field.
Keywords :
Galois fields; Multiplication; Art; Error correction codes; Galois fields; Polynomials; Sufficient conditions; Welding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1986.1057152
Filename :
1057152
Link To Document :
بازگشت