DocumentCode :
941471
Title :
Two-dimensional spectrum estimation using noncausal autoregressive models
Author :
Sharma, Govind ; Chellappa, Rama
Volume :
32
Issue :
2
fYear :
1986
fDate :
3/1/1986 12:00:00 AM
Firstpage :
268
Lastpage :
275
Abstract :
Two-dimensional (2-D) spectrum estimation from raw data is of interest in signal and image processing. A parametric technique for spectrum estimation using 2-D noncausal autoregressive (NCAR) models is given. The NCAR models characterize the statistical dependency of the observation at location s on its neighbors in all directions. This modeling assumption reduces the spectrum estimation problem to two subproblems: the choice of appropriate structure of the NCAR model and the estimation of parameters in NCAR models. By assuming that the true structure of the NCAR model is known, we first analyze the existence and uniqueness of Gaussian maximum likelihood (GML) estimates of NCAR model parameters. Due to the noncausal nature of the models, the computation of GML estimates is burdensome. By assuming specific boundary conditions, computationally tractable expressions are obtained for the likelihood function. Expressions for the asymptotic covariance matrix of the GML estimates as well as the simultaneous confidence bands for the estimated spectrum using GML estimates are derived. Finally, the usefulness of the method is illustrated by computer simulation results.
Keywords :
Autoregressive processes; Parameter estimation; maximum-likelihood (ML) estimation; Boundary conditions; Computational modeling; Computer simulation; Covariance matrix; Image processing; Maximum likelihood estimation; Parameter estimation; Signal processing; Spectral analysis; Two dimensional displays;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1986.1057164
Filename :
1057164
Link To Document :
بازگشت