• DocumentCode
    941599
  • Title

    Affine invariant extended cyclic codes over Galois rings

  • Author

    Dey, Bikash Kumar ; Rajan, B. Sundar

  • Author_Institution
    Int. Inst. of Inf. Technol., Hyderabad, India
  • Volume
    50
  • Issue
    4
  • fYear
    2004
  • fDate
    4/1/2004 12:00:00 AM
  • Firstpage
    691
  • Lastpage
    698
  • Abstract
    Recently, Blackford and Ray-Chaudhuri used transform domain techniques to permutation groups of cyclic codes over Galois rings. They used the same technique to find a set of necessary and sufficient conditions for extended cyclic codes of length 2m over any subring of GR(4,m) to be affine invariant. Here, we use the same technique to find a set of necessary and sufficient conditions for extended cyclic codes of length pm over any subring of GR(pe,m) to be affine invariant, for e=2 with arbitrary p and for p=2 with arbitrary e. These are used to find two new classes of affine invariant Bose-Chaudhuri-Hocquenghem (BCH) and generalized Reed-Muller (GRM) codes over Z2e for arbitrary e and a class of affine invariant BCH codes over Zp2 for arbitrary prime p.
  • Keywords
    BCH codes; Galois fields; Reed-Muller codes; cyclic codes; BCH code; Bose-Chaudhuri-Hocquenghem code; GRM code; Galois ring; affine invariant code; automorphism group; code length; extended cyclic code; generalized Reed-Muller code; permutation group; transform domain technique; Binary codes; Decoding; Galois fields; Information technology; Information theory; Linear code; Polynomials; Sufficient conditions;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2004.825044
  • Filename
    1278670