DocumentCode :
941611
Title :
A note on nonlinear Xing codes
Author :
Shany, Yaron ; Be´ery, Yair
Author_Institution :
Dept. of Electr. Eng.-Syst., Tel-Aviv Univ., Israel
Volume :
50
Issue :
4
fYear :
2004
fDate :
4/1/2004 12:00:00 AM
Firstpage :
699
Lastpage :
700
Abstract :
Nonlinear Xing codes are considered. It is shown that Xing codes of length p-1 (where p is a prime) are subcodes of cosets of Reed-Solomon codes whose minimum distance equals Xing´s lower bound on the minimum distance. This provides a straightforward proof for the lower bound on the minimum distance of the codes. The alphabet size of Xing codes is restricted not to be larger than the characteristic of the relevant finite field Fr. It is shown that codes with the same length and the same lower bounds on the size and minimum distance as Xing codes exist for any alphabet size not exceeding the size r of the relevant finite field, thus extending Xing´s results.
Keywords :
Reed-Solomon codes; nonlinear codes; Reed-Solomon codes; nonlinear Xing codes; relevant finite field characteristic; Codes; Decoding; Encoding; Galois fields; Modules (abstract algebra);
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2004.825038
Filename :
1278671
Link To Document :
بازگشت