Title :
Hyperchaotic spiking oscillators with periodic pulse-train input
Author :
Takahashi, Yusuke ; Nakano, Hidehiro ; Saito, Toshimichi
Author_Institution :
SONY Co.. Ltd., Tokyo, Japan
fDate :
6/1/2005 12:00:00 AM
Abstract :
This paper studies simple spiking oscillators with periodic pulse-train input. The circuits are piecewise linear and a normal form circuit equation is derived in order to extract essential parameters. The return map and its Jacobian matrix can be described precisely. If the input is not present, the circuits can exhibit hyperchaotic and periodic attractors. As the input is applied, the attractors can be changed into various periodic, chaotic and hyperchaotic attractors. The phenomena are characterized by Lyapunov exponents of the return map. Typical phenomena can be confirmed experimentally. These results provide basic information for analysis of bifurcation phenomena and application to pulse-coupled networks.
Keywords :
Jacobian matrices; Lyapunov methods; bifurcation; chaos; neural nets; oscillators; parameter estimation; pulse circuits; synchronisation; Jacobian matrix; Lyapunov exponents; bifurcation phenomena; hyperchaotic spiking oscillators; neural networks; normalized circuit equation; parameter extraction; periodic pulse-train; piecewise linear circuits; pulse-coupled networks; Bifurcation; Chaotic communication; Communication switching; Equations; Information analysis; Oscillators; Piecewise linear techniques; Switched capacitor circuits; Switches; Switching circuits; Bifurcation; chaos; neural networks; nonlinear circuits; synchronization;
Journal_Title :
Circuits and Systems II: Express Briefs, IEEE Transactions on
DOI :
10.1109/TCSII.2005.849002