Title :
Comparison of entropy and complexity measures for the assessment of depth of sedation
Author :
Ferenets, Rain ; Lipping, Tarmo ; Anier, Andres ; Jäntti, Ville ; Melto, Sari ; Hovilehto, Seppo
Author_Institution :
Dept. of Inf. Technol., Tampere Univ. of Technol., Finland
fDate :
6/1/2006 12:00:00 AM
Abstract :
Entropy and complexity of the electroencephalogram (EEG) have recently been proposed as measures of depth of anesthesia and sedation. Using surrogate data of predefined spectrum and probability distribution we show that the various algorithms used for the calculation of entropy and complexity actually measure different properties of the signal. The tested methods, Shannon entropy (ShEn), spectral entropy, approximate entropy (ApEn), Lempel-Ziv complexity (LZC), and Higuchi fractal dimension (HFD) are then applied to the EEG signal recorded during sedation in the intensive care unit (ICU). It is shown that the applied measures behave in a different manner when compared to clinical depth of sedation score the Ramsay score. ShEn tends to increase while the other tested measures decrease with deepening sedation. ApEn, LZC, and HFD are highly sensitive to the presence of high-frequency components in the EEG signal.
Keywords :
electroencephalography; entropy; fractals; medical signal processing; probability; EEG; Higuchi fractal dimension; Lempel-Ziv complexity; Ramsay score; Shannon entropy; approximate entropy; electroencephalogram; intensive care unit; probability distribution; sedation; spectral entropy; Anesthesia; Biomedical engineering; Biomedical measurements; Biomedical monitoring; Condition monitoring; Electroencephalography; Entropy; Fractals; Information technology; Testing; Complexity; EEG; Ramsay score; depth of anesthesia; depth of sedation; entropy; surrogate data; Adult; Aged; Aged, 80 and over; Algorithms; Anesthesia; Anesthetics; Brain; Conscious Sedation; Diagnosis, Computer-Assisted; Electroencephalography; Entropy; Humans; Middle Aged; Pattern Recognition, Automated; Propofol; Therapy, Computer-Assisted;
Journal_Title :
Biomedical Engineering, IEEE Transactions on
DOI :
10.1109/TBME.2006.873543