Title :
Recursive parameter estimation for noisy autoregressive signals (Corresp.)
Author :
Tugnait, Jitendra K.
fDate :
5/1/1986 12:00:00 AM
Abstract :
The problem of recursively estimating the unknown parameters of a scalar autoregressive (AR) signal observed in additive white noise, including signal power and noise variance, is considered. A state-space model in a canonical but noninnovations form is used to represent the noisy AR signal. An algorithm based on a system identification/parameter estimation technique known as the recursive prediction error method is presented for recursive parameter estimation. Two simulation examples illustrate the effectiveness of the proposed algorithm.
Keywords :
Autoregressive processes; Parameter estimation; Additive white noise; Autocorrelation; Autoregressive processes; Geometry; Parameter estimation; Process design; Production; Recursive estimation; Signal processing; Signal processing algorithms;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.1986.1057185