DocumentCode :
941720
Title :
On MDS extensions of generalized Reed- Solomon codes
Author :
Seroussi, Gadiel ; Roth, Ron M.
Volume :
32
Issue :
3
fYear :
1986
fDate :
5/1/1986 12:00:00 AM
Firstpage :
349
Lastpage :
354
Abstract :
An (n, k, d) linear code over F= GF (q) is said to be {em maximum distance separable} (MDS) if d = n - k + 1 . It is shown that an (n, k, n - k + 1) generalized Reed-Solomon code such that 2 \\leq k \\leq n - \\lfloor (q - 1)/2 \\rfloor (k \\neq 3 \\hbox{ if } q is even) can be extended by one digit while preserving the MDS property if and only if the resulting extended code is also a generalized Reed-Solomon code. It follows that a generalized Reed-Solomon code with k in the above range can be {em uniquely} extended to a maximal MDS code of length q + 1 , and that generalized Reed-Solomon codes of length q + 1 and dimension 2 \\leq k \\leq \\lfloor q/2 \\rfloor + 2 (k \\neq 3 \\hbox{ if } q is even) do not have MDS extensions. Hence, in cases where the (q + 1, k) MDS code is essentially unique, (n, k) MDS codes with n > q + 1 do not exist.
Keywords :
Reed-Solomon coding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1986.1057188
Filename :
1057188
Link To Document :
بازگشت