DocumentCode :
941838
Title :
An achievable bound for optimal noiseless coding of a random variable (Corresp.)
Author :
Verriest, Erik
Volume :
32
Issue :
4
fYear :
1986
fDate :
7/1/1986 12:00:00 AM
Firstpage :
592
Lastpage :
594
Abstract :
For a discrete N -valued random variable ( N possibly denumerably infinite) Leung-Yan-Cheong and Cover have given bounds for the minimal expected length of a one-to-one (not necessarily uniquely decodable) code L_{1:1}=\\sum _{i=1}^{N} p_{i} \\log \\left( frac{1}{2} + 1 \\right). It is shown that the best possible case occurs for certain denumerably infinite sets of nonzero probabilities. This absolute bound is related to the Shannon entropy H of the distribution by (h (\\cdot) is the binary entropy function).
Keywords :
Source coding; Books; Constraint optimization; Decoding; Entropy; Random variables; Uncertainty;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1986.1057200
Filename :
1057200
Link To Document :
بازگشت