DocumentCode :
942144
Title :
Bounds for codes over the unit circle
Author :
Piret, Philippe
Volume :
32
Issue :
6
fYear :
1986
fDate :
11/1/1986 12:00:00 AM
Firstpage :
760
Lastpage :
767
Abstract :
Let C be a code of length n and rate R over the alphabet A(Q)={ \\exp (2\\pi ir/Q): r=O,1, \\cdots ,Q-1} , and let d(C) be the minimum Euclidean distance of C . For large n , the lower and upper bounds are obtained in parametric form on the achievable pairs (R, \\delta ) , where \\delta = d^{2}(C)/n holds. To obtain these bounds, the arguments leading to the Gilbert bound and the Elias bound, respectively, are applied to the alphabet A(Q) . For Q \\rightarrow \\infty , they are shown to be expressible in terms of the modified Bessel function of the first kind. The Elias type bound is compared with the Kabatyanskii-Levenshtein (K-L) bound that holds for less restrictive alphabets. It turns out that our upper bound improves the K-L bound for \\delta \\leq 0.93 .
Keywords :
Error-correction coding; Binary codes; Constellation diagram; Convolutional codes; Demodulation; Euclidean distance; Gaussian noise; Noise level; Phase modulation; Phase shift keying; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1986.1057230
Filename :
1057230
Link To Document :
بازگشت