• DocumentCode
    942880
  • Title

    Sequences achieving the boundary of the entropy region for a two-source are virtually memoryless (Corresp.)

  • Author

    Marton, Katalin

  • Volume
    33
  • Issue
    3
  • fYear
    1987
  • fDate
    5/1/1987 12:00:00 AM
  • Firstpage
    443
  • Lastpage
    448
  • Abstract
    For a joint distribution {\\rm dist}(X,Y) , the function T(t)=\\min { H(Y|U): I(U \\wedge Y|X)=O, H(X|U)\\geq t} is an important characteristic. It equals the asymptotic minimum of (1/n)H(Y^{n}) for random pairs of sequences (X^{n}, Y^{n}) , where frac{1}{n} \\sum ^{n}_{i=1}{\\rm dist} X_{i} \\sim {\\rm dist} X, {\\rm dist} Y^{n}|X^{n} = ({\\rm dist} Y|X)^{n}, frac{1}{n}H(X^{n})\\geq t. We show that if, for (X^{n}, Y^{n}) as given, the rate pair [(1/n)H(X^{n}) , (1/n)H(Y^{n})] approaches the nonlinear part of the curve (t,T(t)) , then the sequence X^{n} is virtually memoryless. Using this, we determine some extremal sections of the rate region of entropy characterization problems and find a nontrivial invariant for weak asymptotic isomorphy of discrete memoryless correlated sources.
  • Keywords
    Entropy; Source coding; Amplitude modulation; Conferences; Decoding; Entropy; Information theory; Modulation coding; Pulse modulation;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1987.1057303
  • Filename
    1057303