DocumentCode
944494
Title
An Efficient Procedure for Solving a Fuzzy Relational Equation With Max–Archimedean t-Norm Composition
Author
Wu, Yan-Kuen ; Sy-Ming Guu
Author_Institution
Dept. of Ind. Manage., Vanung Univ., Taoyuan
Volume
16
Issue
1
fYear
2008
Firstpage
73
Lastpage
84
Abstract
In the literature, a necessary condition for minimal solutions of a fuzzy relational equation with max-product composition shows that each of its components is either zero or the corresponding component´s value of the greatest solution. In this paper, we first extend this necessary condition to the situation with max-Archimedean triangular-norm (t-norm) composition. Based on this necessary condition, we then propose rules to reduce the problem size so that the complete set of minimal solutions can be computed efficiently. Furthermore, rather than work with the actual equations, we employ a simple matrix whose elements capture all of the properties of the equations in finding the minimal solutions. Numerical examples with specific cases of the max-Archimedean t-norm composition are provided to illustrate the procedure.
Keywords
fuzzy set theory; matrix algebra; optimisation; Archimedean t-norm composition; fuzzy relational equation; matrix algebra; max-product composition; minimal solution; Archimedean triangular norm (t-norm); fuzzy relational equations; minimal solutions;
fLanguage
English
Journal_Title
Fuzzy Systems, IEEE Transactions on
Publisher
ieee
ISSN
1063-6706
Type
jour
DOI
10.1109/TFUZZ.2007.902018
Filename
4358810
Link To Document