DocumentCode :
947574
Title :
Bayes´ optimum filters derived using Wiener canonical forms
Author :
Brick, Donald B. ; Zames, George
Volume :
8
Issue :
5
fYear :
1962
fDate :
9/1/1962 12:00:00 AM
Firstpage :
35
Lastpage :
46
Abstract :
Canonical forms and circuit structures are derived for Bayes\´ optimum decision rules utilizing Wiener-like functionals. The formalism is valid for loss functions whose derivatives with respect to the estimates exist, ( L_2 over the space of unknowns ), The structures derived consist of orthonormal filter sets (usually Laguerre filters ) followed by combinations of \\nu^{th} -law-devices (Hermite polynomial generators of the Laguerre coefficients), amplifiers of specified gains, and then summing and division circuits. The amplifier gains can be partially preadjusted via a sample of the observable and unknown or by a pre-computation; the remainder of the gain adjustment is, in the general case, obtained via feedback through a function generator. If the gains are adjusted via the first method, ergodicity is required and self-adaptive features are implied. As a first step in the exposition, analogous canonical forms and structures, where the past of the observable is characterized by its time-samp]es rather than by its Iaguerre coefficients, are obtained. The derivation does not stop here because of the limitations of the description, analysis, and equipment-realization of a stochastic process in terms of a finite number of its time samples. The advantage of the structural forms derived over previous ones is that they are formally valid for all values of signal-to-noise ratio and are always physically realizable and time-invariant whereas this has not usually been true in the past. Several examples of structures are given. Existence and convergence problems are discussed in the appendices. Perhaps more important than the explicit results obtained here are the implications involved in the procedure. The fact that expansions of the probability measures for a significant class of stochastic processes has been obtained in terms of canonical expansions of the Wiener process is felt to be a major accomplishment.
Keywords :
Adaptive filters; Bayes procedures; Filtering; Signal detection; Wiener filtering; Circuit synthesis; Cost function; Decision theory; Density measurement; Equations; Extraterrestrial measurements; Extraterrestrial phenomena; Feedback circuits; Laboratories; Loss measurement; Matched filters; Nonlinear filters; Parameter estimation; Signal generators; Signal processing; Signal synthesis; Signal to noise ratio; Stochastic processes; Wiener filter;
fLanguage :
English
Journal_Title :
Information Theory, IRE Transactions on
Publisher :
ieee
ISSN :
0096-1000
Type :
jour
DOI :
10.1109/TIT.1962.1057772
Filename :
1057772
Link To Document :
بازگشت