DocumentCode :
948169
Title :
A Dynamically Adjusted Mixed Emphasis Method for Building Boosting Ensembles
Author :
Gómez-Verdejo, Vanessa ; Arenas-García, Jerónimo ; Figueiras-Vidal, Aníbal R.
Author_Institution :
Univ. Carlos III de Madrid, Leganes
Volume :
19
Issue :
1
fYear :
2008
Firstpage :
3
Lastpage :
17
Abstract :
Progressively emphasizing samples that are difficult to classify correctly is the base for the recognized high performance of real Adaboost (RA) ensembles. The corresponding emphasis function can be written as a product of a factor that measures the quadratic error and a factor related to the proximity to the classification border; this fact opens the door to explore the potential advantages provided by using adjustable combined forms of these factors. In this paper, we introduce a principled procedure to select the combination parameter each time a new learner is added to the ensemble, just by maximizing the associated edge parameter, calling the resulting method the dynamically adapted weighted emphasis RA (DW-RA). A number of application examples illustrates the performance improvements obtained by DW-RA.
Keywords :
learning (artificial intelligence); multilayer perceptrons; pattern classification; associated edge parameter maximization; dynamically adjusted mixed emphasis method; emphasis function; multilayer perceptron; pattern classification; quadratic error; quadratic factor; real Adaboost ensemble; Adaboost; boosting; convex combination; dynamic parameter selection; emphasis; Algorithms; Artificial Intelligence; Learning; Neural Networks (Computer); Nonlinear Dynamics; Principal Component Analysis;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2007.902723
Filename :
4359195
Link To Document :
بازگشت