DocumentCode :
948254
Title :
A Generalized Least Absolute Deviation Method for Parameter Estimation of Autoregressive Signals
Author :
Xia, Youshen ; Kamel, Mohamed S.
Author_Institution :
Fuzhou Univ., Fuzhou
Volume :
19
Issue :
1
fYear :
2008
Firstpage :
107
Lastpage :
118
Abstract :
This paper proposes a generalized least absolute deviation (GLAD) method for parameter estimation of autoregressive (AR) signals under non-Gaussian noise environments. The proposed GLAD method can improve the accuracy of the estimation of the conventional least absolute deviation (LAD) method by minimizing a new cost function with parameter variables and noise error variables. Compared with second- and high-order statistical methods, the proposed GLAD method can obtain robustly an optimal AR parameter estimation without requiring the measurement noise to be Gaussian. Moreover, the proposed GLAD method can be implemented by a cooperative neural network (NN) which is shown to converge globally to the optimal AR parameter estimation within a finite time. Simulation results show that the proposed GLAD method can obtain more accurate estimates than several well-known estimation methods in the presence of different noise distributions.
Keywords :
autoregressive processes; neural nets; parameter estimation; statistical analysis; autoregressive signal; cooperative neural network; cost function; generalized least absolute deviation; high-order statistical method; noise distribution; noise error variable; nonGaussian noise; parameter estimation; parameter variable; second-order statistical method; Autoregressive (AR) parameter estimation; generalized least absolute deviation (GLAD) method; neural network (NN) algorithm; non-Gaussian noise environments; Algorithms; Feedback; Humans; Learning; Models, Statistical; Neural Networks (Computer); Nonlinear Dynamics; Signal Processing, Computer-Assisted;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2007.902962
Filename :
4359202
Link To Document :
بازگشت