DocumentCode :
948401
Title :
A Hierarchical Graph Neuron Scheme for Real-Time Pattern Recognition
Author :
Nasution, Benny B. ; Khan, Asad I.
Author_Institution :
Monash Univ., Clayton
Volume :
19
Issue :
2
fYear :
2008
Firstpage :
212
Lastpage :
229
Abstract :
The hierarchical graph neuron (HGN) implements a single cycle memorization and recall operation through a novel algorithmic design. The HGN is an improvement on the already published original graph neuron (GN) algorithm. In this improved approach, it recognizes incomplete/noisy patterns. It also resolves the crosstalk problem, which is identified in the previous publications, within closely matched patterns. To accomplish this, the HGN links multiple GN networks for filtering noise and crosstalk out of pattern data inputs. Intrinsically, the HGN is a lightweight in-network processing algorithm which does not require expensive floating point computations; hence, it is very suitable for real-time applications and tiny devices such as the wireless sensor networks. This paper describes that the HGN´s pattern matching capability and the small response time remain insensitive to the increases in the number of stored patterns. Moreover, the HGN does not require definition of rules or setting of thresholds by the operator to achieve the desired results nor does it require heuristics entailing iterative operations for memorization and recall of patterns.
Keywords :
graph theory; neural nets; pattern matching; closely matched patterns; hierarchical graph neuron scheme; lightweight innetwork processing algorithm; noise filtering; pattern matching; real-time pattern recognition; recall operation; single cycle memorization; wireless sensor networks; Artificial intelligence; associative memories (AMs); neural networks (NNs); pattern recognition (PR); Algorithms; Artificial Intelligence; Computer Graphics; Models, Neurological; Neural Networks (Computer); Neurons; Pattern Recognition, Automated;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2007.905857
Filename :
4359217
Link To Document :
بازگشت