DocumentCode :
948545
Title :
A genetic algorithm for shortest path routing problem and the sizing of populations
Author :
Ahn, Chang Wook ; Ramakrishna, R.S.
Author_Institution :
Dept. of Inf. & Commun., Kwangju Inst. of Sci. & Technol., South Korea
Volume :
6
Issue :
6
fYear :
2002
fDate :
12/1/2002 12:00:00 AM
Firstpage :
566
Lastpage :
579
Abstract :
This paper presents a genetic algorithmic approach to the shortest path (SP) routing problem. Variable-length chromosomes (strings) and their genes (parameters) have been used for encoding the problem. The crossover operation exchanges partial chromosomes (partial routes) at positionally independent crossing sites and the mutation operation maintains the genetic diversity of the population. The proposed algorithm can cure all the infeasible chromosomes with a simple repair function. Crossover and mutation together provide a search capability that results in improved quality of solution and enhanced rate of convergence. This paper also develops a population-sizing equation that facilitates a solution with desired quality. It is based on the gambler ruin model; the equation has been further enhanced and generalized. The equation relates the size of the population, quality of solution, cardinality of the alphabet, and other parameters of the proposed algorithm. Computer simulations show that the proposed algorithm exhibits a much better quality of solution (route optimality) and a much higher rate of convergence than other algorithms. The results are relatively independent of problem types for almost all source-destination pairs. Furthermore, simulation studies emphasize the usefulness of the population-sizing equation. The equation scales to larger networks. It is felt that it can be used for determining an adequate population size in the SP routing problem.
Keywords :
ad hoc networks; convergence; encoding; genetic algorithms; telecommunication network routing; convergence; crossover operation; encoding; gambler ruin model; genetic algorithms; mobile ad hoc networks; mutation operation; partial chromosomes; population-sizing equation; shortest path routing problem; Biological cells; Delay estimation; Equations; Genetic algorithms; Genetic mutations; Mobile ad hoc networks; Mobile communication; Network topology; Quality of service; Routing;
fLanguage :
English
Journal_Title :
Evolutionary Computation, IEEE Transactions on
Publisher :
ieee
ISSN :
1089-778X
Type :
jour
DOI :
10.1109/TEVC.2002.804323
Filename :
1134124
Link To Document :
بازگشت