DocumentCode :
9509
Title :
Surface Laplacian of Central Scalp Electrical Signals is Insensitive to Muscle Contamination
Author :
Fitzgibbon, Sean P. ; Lewis, T.W. ; Powers, D.M.W. ; Whitham, E.W. ; Willoughby, J.O. ; Pope, Kenneth J.
Author_Institution :
Sch. of Comput. Sci., Eng. & Math., Flinders Univ., Adelaide, SA, Australia
Volume :
60
Issue :
1
fYear :
2013
fDate :
Jan. 2013
Firstpage :
4
Lastpage :
9
Abstract :
The objective of this paper was to investigate the effects of surface Laplacian processing on gross and persistent electromyographic (EMG) contamination of electroencephalographic (EEG) signals in electrical scalp recordings. We made scalp recordings during passive and active tasks, on awake subjects in the absence and in the presence of complete neuromuscular blockade. Three scalp surface Laplacian estimators were compared to left ear and common average reference (CAR). Contamination was quantified by comparing power after paralysis (brain signal, B) with power before paralysis (brain plus muscle signal, B+M). Brain:Muscle (B:M) ratios for the methods were calculated using B and differences in power after paralysis to represent muscle (M). There were very small power differences after paralysis up to 600 Hz using surface Laplacian transforms (B:M >; 6 above 30 Hz in central scalp leads). Scalp surface Laplacian transforms reduce muscle power in central and pericentral leads to less than one sixth of the brain signal, two to three times better signal detection than CAR. Scalp surface Laplacian transformations provide robust estimates for detecting high-frequency (gamma) activity, for assessing electrophysiological correlates of disease, and also for providing a measure of brain electrical activity for use as a standard in the development of brain/muscle signal separation methods.
Keywords :
Laplace transforms; diseases; electroencephalography; electromyography; estimation theory; medical signal processing; neurophysiology; signal detection; source separation; EEG signals; EMG contamination; brain electrical activity; brain-muscle ratios; brain-muscle signal separation methods; central scalp electrical signals; disease; electrical scalp recordings; electroencephalographic signals; electromyographic contamination; electrophysiological correlates; high-frequency activity; left ear; muscle contamination; muscle power; neuromuscular blockade; paralysis; robust estimates; scalp surface Laplacian estimators; scalp surface Laplacian transforms; signal detection; surface Laplacian processing; Electromyography; Laplace equations; Muscles; Scalp; Spline; Surface contamination; Transforms; Brain; electro-myographic (EMG); electroencephalographic (EEG); paralysis; Adult; Aged; Electroencephalography; Electromyography; Evoked Potentials, Visual; Female; Humans; Male; Middle Aged; Muscle, Skeletal; Scalp; Signal Processing, Computer-Assisted; Task Performance and Analysis;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2012.2195662
Filename :
6188516
Link To Document :
بازگشت