Title :
Analysis and analytical modeling of static pull-In with application to MEMS-based voltage reference and process monitoring
Author :
Rocha, Luis Alexandre ; Cretu, Edmond ; Wolffenbuttel, Reinoud F.
Author_Institution :
Dept. for Microelectron., Delft Univ. of Technol., Netherlands
fDate :
4/1/2004 12:00:00 AM
Abstract :
The pull-in voltage of one- and two-degrees-of-freedom (DOF) structures has been symbolically and numerically analyzed with respect to drive mode dependence and hysteresis. Moreover, the time and temperature stability has been investigated and tested. Modeling results have been applied in the design of both folded-spring-suspended 1-DOF structures and single-side-clamped 2-DOF beams with a nominal pull-in voltage in the 5-10 V range and fabricated in an epi-poly process. Asymmetrically driven structures reveal pull-in close to the value predicted by the model (Vpi 1-DOF is 4.65 V analytically simulated and 4.56 V measured; Vpi 2-DOF is 9.24 V analytically simulated, 9.30 V in FEM and 9.34 V measured). Also the hysteresis is in close agreement (release voltage, Vr, 1-DOF is 1.41 V analytically simulated and 1.45 V measured; Vr 2-DOF is 9.17 V analytically simulated, 9.15 V in FEM and 9.27 V measured). In symmetrically operated devices the differences between the computed and measured Vpi and Vr are much larger and are due to process dependencies, which make these devices very suitable for process monitoring. The 2-DOF asymmetrically operated device is the most suitable for MEMS-based voltage reference. The stability in time is limited by charge build-up and calls for a 100-hour initial burn-in. Temperature dependence is -100 μV/K at Vpi≈5 V, however, is calculable and thus can be corrected or compensated.
Keywords :
hysteresis; micromechanical devices; modelling; numerical analysis; process monitoring; reference circuits; 100 hours; 2-DOF asymmetrically operated device; 5 to 10 V; MEMS-based voltage reference; analytical modeling; analytically simulation; asymmetrically driven structures; drive mode dependence; epi-poly process; folded-spring-suspended 1-DOF structures; hysteresis; numerically analysis; one-degrees-of-freedom structures; process dependencies; process monitoring; single-side-clamped 2-DOF beams; static pull-In voltage; symbolical analysis; symmetrically operated devices; temperature stability; time stability; two-degrees-of-freedom structures; Analytical models; Capacitors; Computational modeling; Electrostatics; Hysteresis; Microelectronics; Monitoring; Predictive models; Stability; Voltage;
Journal_Title :
Microelectromechanical Systems, Journal of
DOI :
10.1109/JMEMS.2004.824892