DocumentCode :
951350
Title :
Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures
Author :
Caron, François ; Davy, Manuel ; Doucet, Arnaud ; Duflos, Emmanuel ; Vanheeghe, Philippe
Author_Institution :
Univ. of British Columbia, Vancouver
Volume :
56
Issue :
1
fYear :
2008
Firstpage :
71
Lastpage :
84
Abstract :
Using Kalman techniques, it is possible to perform optimal estimation in linear Gaussian state-space models. Here, we address the case where the noise probability density functions are of unknown functional form. A flexible Bayesian nonparametric noise model based on Dirichlet process mixtures is introduced. Efficient Markov chain Monte Carlo and sequential Monte Carlo methods are then developed to perform optimal batch and sequential estimation in such contexts. The algorithms are applied to blind deconvolution and change point detection. Experimental results on synthetic and real data demonstrate the efficiency of this approach in various contexts.
Keywords :
Kalman filters; Markov processes; Monte Carlo methods; belief networks; sequential estimation; Bayesian inference; Dirichlet process mixtures; Kalman techniques; Markov chain Monte Carlo methods; blind deconvolution; change point detection; linear dynamic models; noise probability density functions; particle filter; sequential Monte Carlo methods; sequential estimation; Bayesian nonparametrics; Dirichlet process mixture (DPM); Markov chain Monte Carlo (MCMC); Rao–Blackwellization; Rao-Blackwellization; particle filter;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2007.900167
Filename :
4359522
Link To Document :
بازگشت