DocumentCode :
951903
Title :
Sparse and explicit FETD via approximate inverse Hodge (mass) matrix
Author :
He, Bo ; Teixeira, Fernando L.
Author_Institution :
Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA
Volume :
16
Issue :
6
fYear :
2006
fDate :
6/1/2006 12:00:00 AM
Firstpage :
348
Lastpage :
350
Abstract :
Finite-element time-domain (FETD) simulations of Maxwell equations in irregular simplicial grids require the solution of a sparse linear system involving the Hodge (mass) matrix at each time step. This can be avoided by mass lumping techniques that approximate the mass matrix by a diagonal matrix, but not without shortcomings. In this communication, we propose an alternative approach to yield a conditionally stable, fully explicit, and sparse FETD by using a sparse approximate inverse of the mass matrix.
Keywords :
Maxwell equations; finite difference time-domain analysis; finite element analysis; sparse matrices; Maxwell equations; diagonal matrix; finite element time domain simulations; inverse Hodge matrix; irregular simplicial grids; mass lumping techniques; sparse linear system; Finite difference methods; Finite element methods; Helium; Linear systems; Magnetic flux; Maxwell equations; Sparse matrices; Symmetric matrices; Time domain analysis; Finite-difference time-domain (FDTD); finite-element time-domain (FETD);
fLanguage :
English
Journal_Title :
Microwave and Wireless Components Letters, IEEE
Publisher :
ieee
ISSN :
1531-1309
Type :
jour
DOI :
10.1109/LMWC.2006.875621
Filename :
1637491
Link To Document :
بازگشت