DocumentCode :
9530
Title :
Sequential Summarization: A Full View of Twitter Trending Topics
Author :
Dehong Gao ; Wenjie Li ; Xiaoyan Cai ; Renxian Zhang ; You Ouyang
Author_Institution :
Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China
Volume :
22
Issue :
2
fYear :
2014
fDate :
Feb. 2014
Firstpage :
293
Lastpage :
302
Abstract :
As an information delivering platform, Twitter collects millions of tweets every day. However, some users, especially new users, often find it difficult to understand trending topics in Twitter when confronting the overwhelming and unorganized tweets. Existing work has attempted to provide a short snippet to explain a topic, but this only provides limited benefits and cannot satisfy the users´ expectations. In this paper, we propose a new summarization task, namely sequential summarization, which aims to provide a serial of chronologically ordered short sub-summaries for a trending topic in order to provide a complete story about the development of the topic while retaining the order of information presentation. Different from the traditional summarization task, the numbers of sub-summaries for different topics are not fixed. Two approaches, i.e., stream-based and semantic-based approaches, are developed to detect the important subtopics within a trending topic. Then a short sub-summary is generated for each subtopic. In addition, we propose three new measures to evaluate the position-aware coverage, sequential novelty and sequence correlation of the system-generated summaries. The experimental results based on the proposed evaluation criteria have demonstrated the effectiveness of the proposed approaches.
Keywords :
social networking (online); chronologically-ordered short sub-summaries; evaluation criteria; information delivering platform; information presentation; overwhelming tweets; position-aware coverage; semantic-based approach; sequence correlation; sequential novelty; sequential summarization; snippet; stream-based approach; summarization task; system-generated summaries; twitter trending topics; unorganized tweets; user expectation satisfaction; Correlation; Educational institutions; Event detection; Position measurement; Real-time systems; Surges; Twitter; Sequential summarization; subtopic detection; twitter trending topics;
fLanguage :
English
Journal_Title :
Audio, Speech, and Language Processing, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
2329-9290
Type :
jour
DOI :
10.1109/TASL.2013.2282191
Filename :
6600814
Link To Document :
بازگشت