Title :
Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design
Author :
Erbas, Cagkan ; Cerav-Erbas, Selin ; Pimentel, Andy D.
Author_Institution :
Dept. of Comput. Sci., Univ. of Amsterdam, Netherlands
fDate :
6/1/2006 12:00:00 AM
Abstract :
Sesame is a software framework that aims at developing a modeling and simulation environment for the efficient design space exploration of heterogeneous embedded systems. Since Sesame recognizes separate application and architecture models within a single system simulation, it needs an explicit mapping step to relate these models for cosimulation. The design tradeoffs during the mapping stage, namely, the processing time, power consumption, and architecture cost, are captured by a multiobjective nonlinear mixed integer program. This paper aims at investigating the performance of multiobjective evolutionary algorithms (MOEAs) on solving large instances of the mapping problem. With two comparative case studies, it is shown that MOEAs provide the designer with a highly accurate set of solutions in a reasonable amount of time. Additionally, analyses for different crossover types, mutation usage, and repair strategies for the purpose of constraints handling are carried out. Finally, a number of multiobjective optimization results are simulated for verification.
Keywords :
constraint handling; embedded systems; evolutionary computation; integer programming; microprocessor chips; network synthesis; nonlinear programming; system-on-chip; Sesame software framework; application mapping problem; architecture cost; constraint handling; different crossover types; efficient design space exploration; heterogeneous embedded systems; mapping stage; multiobjective evolutionary algorithms; multiobjective nonlinear mixed integer program; multiobjective optimization; multiprocessor system-on-chip design; mutation usage; power consumption; processing time; repair strategies; single system simulation; Algorithm design and analysis; Application software; Computer architecture; Design optimization; Embedded software; Embedded system; Evolutionary computation; Multiprocessing systems; Power system modeling; Space exploration; Design space exploration; evolutionary algorithms; mixed integer programming; multiobjective optimization; multiprocessor system-on-chip (SoC) design;
Journal_Title :
Evolutionary Computation, IEEE Transactions on
DOI :
10.1109/TEVC.2005.860766