DocumentCode :
954866
Title :
Inner-outer factorization for nonlinear noninvertible systems
Author :
Ball, Joseph A. ; Petersen, Mark A. ; Van der Schaft, Arjan
Author_Institution :
Dept. of Math., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA
Volume :
49
Issue :
4
fYear :
2004
fDate :
4/1/2004 12:00:00 AM
Firstpage :
483
Lastpage :
492
Abstract :
This paper considers inner-outer factorization of asymptotically stable nonlinear state space systems in continuous time that are noninvertible. Our approach will be via a nonlinear analogue of spectral factorization which concentrates on first finding the outer factor instead of the inner factor. An application of the main result to control of nonminimum phase nonlinear systems is indicated.
Keywords :
Jacobian matrices; asymptotic stability; continuous time systems; matrix decomposition; nonlinear control systems; state-space methods; Hamilton-Jacobi inequality; asymptotic stability; continuous time systems; dissipative systems; inner-outer factorization; nonlinear Smith predictor; nonlinear noninvertible systems; phase nonlinear system control; spectral factorization; state space systems; Africa; Asymptotic stability; Channel hot electron injection; Control systems; Linear matrix inequalities; Mathematics; Matrix decomposition; Nonlinear control systems; Nonlinear systems; State-space methods;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2004.825644
Filename :
1284712
Link To Document :
بازگشت