Title :
Galois field arithmetic over GF(pm) for high-speed/low-power error-control applications
Author_Institution :
Electron. & Comput. Eng. Dept., Univ. of Limerick, Ireland
fDate :
4/1/2004 12:00:00 AM
Abstract :
This paper presents a very large-scale integration implementation of Galois field arithmetic for high-speed error-control coding applications that is based on the field GF(pm) with m a small integer such as 2 or 3 and p a prime of sufficient value to generate the required field size. In this case, the Galois field arithmetic operations of addition, multiplication, and inversion are based on architectures using blocks that perform integer arithmetic modulo p. These integer arithmetic operations modulo p have previously been implemented with low delay power products through the use of one hot coding and barrel shifters circuits based on transistor arrays. In this paper, the same one hot coding and barrel shifters circuits are used to construct circuits that implement addition, multiplication, and inversion over GF(pm). The circuits for GF(pm) addition and multiplication with p≠2, achieve a lower power-delay product than designs based on GF(2m). Also, the architecture for GF(pm) inversion can be efficiently implemented when m=2 or m=3.
Keywords :
Galois fields; arithmetic; encoding; error correction codes; Galois field arithmetic; Galois field inversion; Reed Solomon decoding; addition; arithmetic operations; barrel shifters circuits; high-speed error-control coding; high-speed/low-power error-control applications; multiplication; transistor arrays; very large-scale integration; Arithmetic; Circuits; Decoding; Delay; Encoding; Error correction; Galois fields; Large scale integration; Product design; Reed-Solomon codes;
Journal_Title :
Circuits and Systems I: Regular Papers, IEEE Transactions on
DOI :
10.1109/TCSI.2004.823659