Title :
Achieving Low-
Ni-FUSI CMOS by Ultra-Thin
Capping of Hafnium
Author :
Veloso, A. ; Yu, H.Y. ; Chang, S.Z. ; Adelmann, C. ; Onsia, B. ; Brus, S. ; Demand, M. ; Lauwers, A. ; O´Sullivan, B.J. ; Singanamalla, R. ; Pourtois, G. ; Lehnen, P. ; Van Elshocht, S. ; De Meyer, K. ; Jurczak, M. ; Absil, P.P. ; Biesemans, S.
Author_Institution :
Interuniversity Microelectron. Center, Leuven
Abstract :
This letter reports that the effective work function (eWF) of Ni-Fully Silicided (Ni-FUSI) devices with HfSiON gate dielectrics can be modulated toward the silicon conduction band-edge by deposition of an ultra-thin Dy2O3 cap layer on the host dielectric. The obtained eWF depends on the deposited cap layer thickness and the Ni-FUSI phase, with 10 Aring Dy2O3 cap resulting in DeltaeWF ap 400 meV and final eWF ap 4.08 eV for NiSi-FUSI. Dielectric intermixing occurs without impacting the VT uniformity, gate leakage, mobility, and reliability. Well-behaved short-channel devices ( Lg ~ 100 nm, SS ~ 70 mV/dec, and DIBL ~ 65 mV/V) are demonstrated for both HfSiON and [HfSiON/Dy2O3 cap (5 Aring)] devices with NiSi-FUSI gates, corresponding to a similar . This capping approach, when combined with Ni-silicide FUSI phase engineering, allows (n-p) values up to 800 meV, making it promising for low- CMOS.
Keywords :
CMOS integrated circuits; dysprosium compounds; hafnium compounds; high-k dielectric thin films; nickel; work function; CMOS; Dy2O3; HfSiON; Ni; cap layers; dielectric intermixing; effective work function; fully silicided device; hafnium silicate dielectric capping; high-k dielectrics; CMOS technology; Chemical vapor deposition; Dielectric devices; Gate leakage; Hafnium; High K dielectric materials; High-K gate dielectrics; MOS devices; Process control; Silicon; Cap layers; Ni-Fully Silicided (Ni-FUSI) metal gates; high- $k$ dielectrics; low- $V_{T}$ CMOS;
Journal_Title :
Electron Device Letters, IEEE
DOI :
10.1109/LED.2007.908505