DocumentCode :
961511
Title :
Sparse Linear Regression With Structured Priors and Application to Denoising of Musical Audio
Author :
Févotte, Cédric ; Torrésani, Bruno ; Daudet, Laurent ; Godsill, Simon J.
Author_Institution :
CNRS-GETTelecom Paris, Paris
Volume :
16
Issue :
1
fYear :
2008
Firstpage :
174
Lastpage :
185
Abstract :
We describe in this paper an audio denoising technique based on sparse linear regression with structured priors. The noisy signal is decomposed as a linear combination of atoms belonging to two modified discrete cosine transform (MDCT) bases, plus a residual part containing the noise. One MDCT basis has a long time resolution, and thus high frequency resolution, and is aimed at modeling tonal parts of the signal, while the other MDCT basis has short time resolution and is aimed at modeling transient parts (such as attacks of notes). The problem is formulated within a Bayesian setting. Conditional upon an indicator variable which is either 0 or 1, one expansion coefficient is set to zero or given a hierarchical prior. Structured priors are employed for the indicator variables; using two types of Markov chains, persistency along the time axis is favored for expansion coefficients of the tonal layer, while persistency along the frequency axis is favored for the expansion coefficients of the transient layer. Inference about the denoised signal and model parameters is performed using a Gibbs sampler, a standard Markov chain Monte Carlo (MCMC) sampling technique. We present results for denoising of a short glockenspiel excerpt and a long polyphonic music excerpt. Our approach is compared with unstructured sparse regression and with structured sparse regression in a single resolution MDCT basis (no transient layer). The results show that better denoising is obtained, both from signal-to-noise ratio measurements and from subjective criteria, when both a transient and tonal layer are used, in conjunction with our proposed structured prior framework.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; acoustic signal processing; discrete cosine transforms; music; musical acoustics; regression analysis; signal denoising; signal sampling; Bayesian setting; Gibbs sampler; MCMC sampling technique; MDCT basis; Markov chain Monte Carlo; Markov chains; modified discrete cosine transform; musical audio denoising; noisy signal decomposition; sparse linear regression; structured priors; Bayesian methods; Discrete cosine transforms; Fast Fourier transforms; Frequency; Linear regression; Monte Carlo methods; Noise reduction; Sampling methods; Signal analysis; Signal resolution; Bayesian variable selection; Markov chain Monte Carlo (MCMC) methods; denoising; nonlinear signal approximation; sparse component analysis; sparse regression; sparse representations;
fLanguage :
English
Journal_Title :
Audio, Speech, and Language Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1558-7916
Type :
jour
DOI :
10.1109/TASL.2007.909290
Filename :
4374123
Link To Document :
بازگشت