Title :
Higher order hierarchical discretization scheme for surface integral equations for layered media
Author :
Jorgensen, E. ; Kim, Oleksiy S. ; Meincke, Peter ; Breinbjerg, O.
Author_Institution :
Sect. for Electromagn. Syst., Tech. Univ. of Denmark, Lyngby, Denmark
fDate :
4/1/2004 12:00:00 AM
Abstract :
This paper presents an efficient technique for the analysis of electromagnetic scattering by arbitrarily shaped perfectly conducting objects in layered media. The technique is based on a higher order method of moments (MoM) solution of the electric field, magnetic field, or combined-field integral equation. This higher order MoM solution comprises higher order curved patches for the geometry modeling and higher order hierarchical basis functions for expansion of the electric surface current density. Due to the hierarchical property of the basis functions, the order of the expansion can be selected separately on each patch depending on the wavelength in the layer in which the patch is located and the size of the patch. In this way, a significant reduction of the number of unknowns is achieved and the same surface mesh can be reused in a wide frequency band. It is shown that even for fairly large problems, the higher order hierarchical MoM requires less memory than existing fast multipole method (FMM) or multilevel FMM implementations.
Keywords :
Legendre polynomials; electromagnetic wave scattering; geophysical techniques; integral equations; method of moments; remote sensing; CFIE; Legendre polynomial; MoM; PEC object; arbitrarily shaped perfectly conducting objects; combined-field integral equation; electric field; electric surface current density; electromagnetic scattering; fast multipole method; geometry modeling; hierarchical basis functions; higher order curved patches; higher order hierarchical discretization scheme; layer wavelength; layered media; magnetic field; method of moments; multilevel FMM implementations; surface integral equations; surface mesh; vector basis functions; wide frequency band; Current density; Electromagnetic analysis; Electromagnetic scattering; Geometry; Integral equations; Magnetic analysis; Magnetic fields; Moment methods; Nonhomogeneous media; Solid modeling;
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2003.819881