DocumentCode :
962328
Title :
Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence
Author :
Simard, Jean-Robert ; Roy, Gilles ; Mathieu, Pierre ; Larochelle, Vincent ; McFee, John ; Ho, Jim
Author_Institution :
DRDC Val-cartier, Val-Belair, Que., Canada
Volume :
42
Issue :
4
fYear :
2004
fDate :
4/1/2004 12:00:00 AM
Firstpage :
865
Lastpage :
874
Abstract :
In atmospheric sensing, one application that has demonstrated several impressive successes over the last two decades is the light detection and ranging (LIDAR). Elastic LIDAR has shown an important capability in providing aerosol density and spatial distribution from a standoff position. However, it provides limited information on the material composition of the aerosol component. On the other hand, inelastic LIDARs (including laser-induced fluorescence and Raman LIDARs) measure the spectrally distributed returned signal that may contain important clues about the nature of the scatterers. In order to investigate the capability of these LIDARs in characterizing bioaerosols from a standoff position, Defence Research & Development Canada initiated a three-year program in spring 1999, named SINBAHD (Standoff Integrated Bioaerosol Active Hyperspectral Detection). The aim of the program was to investigate the sensitivity and discrimination capabilities of an inelastic LIDAR based on the intensified range-gated spectral detection of laser-induced fluorescence. An exploratory prototype based on this technique has shown sensitivity of a few living bioaerosol particles per liter of air for a range of 1.4 km at night. Furthermore, based on spectral signatures measured during open-air releases, good discrimination capabilities were obtained between Bacillius subtilis var globiggi (BG) and Erwinia herbicola (EH). These results agree well with a performance model using Raman returns from atmospheric nitrogen as a calibration tool.
Keywords :
Raman spectroscopy; aerosols; atmospheric composition; atmospheric techniques; biological effects of laser radiation; fluorescence spectroscopy; microorganisms; remote sensing; spectral analysis; Bacillius subtilis var globiggi; Defence Research & Development Canada; Erwinia herbicola; ICCD; LIF; Raman LIDAR; SINBAHD; Standoff Integrated Bioaerosol Active Hyperspectral Detection; aerosol component; aerosol density; atmospheric nitrogen; atmospheric sensing; bioaerosol characterization; bioaerosol particles; calibration tool; discrimination capabilities; exploratory prototype; intensified charge-coupled device; laser-induced fluorescence; light detection and ranging; material composition; open-air releases; range-gated spectral analysis; spatial distribution; spectral signatures; spectrally distributed returned signal; Aerosols; Biological materials; Composite materials; Fluorescence; Laser radar; Light scattering; Optical materials; Particle scattering; Raman scattering; Spectral analysis;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2003.823285
Filename :
1288380
Link To Document :
بازگشت