Abstract :
In the Fourier representation of signals, spectral magnitude and phase tend to play different roles and in some situations many of the important features of a signal are preserved if only the phase is retained. Furthermore, under a variety of conditions, such as when a signal is of finite length, phase information alone is sufficient to completely reconstruct a signal to within a scale factor. In this paper, we review and discuss these observations and results in a number of different contexts and applications. Specifically, the intelligibility of phase-only reconstruction for images, speech, and crystallographic structures are illustrated. Several approaches to justifying the relative importance of phase through statistical arguments are presented, along with a number of informal arguments suggesting reasons for the importance of phase. Specific conditions under which a sequence can be exactly reconstructed from phase are reviewed, both for one-dimensional and multi-dimensional sequences, and algorithms for both approximate and exact reconstruction of signals from phase information are presented. A number of applications of the observations and results in this paper are suggested.