Title :
Offline recognition of unconstrained handwritten texts using HMMs and statistical language models
Author :
Bunke, Horst ; Bengio, Samy ; Vinciarelli, Alessandro
fDate :
6/1/2004 12:00:00 AM
Abstract :
This paper presents a system for the offline recognition of large vocabulary unconstrained handwritten texts. The only assumption made about the data is that it is written in English. This allows the application of statistical language models in order to improve the performance of our system. Several experiments have been performed using both single and multiple writer data. Lexica of variable size (from 10,000 to 50,000 words) have been used. The use of language models is shown to improve the accuracy of the system (when the lexicon contains 50,000 words, the error rate is reduced by ∼50 percent for single writer data and by ∼25 percent for multiple writer data). Our approach is described in detail and compared with other methods presented in the literature to deal with the same problem. An experimental setup to correctly deal with unconstrained text recognition is proposed.
Keywords :
computational linguistics; handwritten character recognition; hidden Markov models; statistical analysis; English; large vocabulary unconstrained handwritten texts; multiple writer data; offline recognition; single writer data; statistical language models; unconstrained text recognition; Data mining; Dictionaries; Error analysis; Handwriting recognition; Hidden Markov models; Law; Legal factors; Natural languages; Text recognition; Vocabulary; Nhbox{-}{rm{grams}}; Offline cursive handwriting recognition; continuous density Hidden Markov Models.; statistical language models; Algorithms; Artificial Intelligence; Automatic Data Processing; Biometry; Computer Graphics; Documentation; Handwriting; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Markov Chains; Models, Statistical; Numerical Analysis, Computer-Assisted; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Subtraction Technique; User-Computer Interface;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2004.14