Title :
Comparison of Calibration Techniques for Ground-Based C-Band Radiometers
Author :
Tien, Kai-Jen C. ; De Roo, Roger D. ; Judge, Jasmeet ; Pham, Hanh
Author_Institution :
Dept. of Agric. Eng., Florida Univ., Gainesville, FL
Abstract :
We quantify the performance of three commonly used techniques to calibrate ground-based microwave radiometers for soil moisture studies, external (EC), tipping-curve (TC), and internal (IC). We describe two ground-based C-band radiometer systems with similar design and the calibration experiments conducted in Florida and Alaska using these two systems. We compare the consistency of the calibration curves during the experiments among the three techniques and evaluate our calibration by comparing the measured brightness temperatures (TBs) to those estimated from a lake emission model (LEM). The mean absolute difference among the TBs calibrated using the three techniques over the observed range of output voltages during the experiments was 1.14 K. Even though IC produced the most consistent calibration curves, the differences among the three calibration techniques were not significant. The mean absolute errors (MAEs) between the observed and LEM TB s were about 2-4 K. As expected, the utility of TC at C-band was significantly reduced due to transparency of the atmosphere at these frequencies. Because IC was found to have a MAE of about 2 K that is suitable for soil moisture applications and was consistent during our experiments under different environmental conditions, it could augment less frequent calibrations obtained using the EC or TC techniques
Keywords :
calibration; microwave detectors; moisture; radiometers; radiometry; soil; Alaska; Florida; USA; brightness temperatures; calibration techniques; ground-based C-band radiometers; ground-based microwave radiometers; lake emission model; mean absolute errors; soil moisture studies; Atmosphere; Brightness temperature; Calibration; Lakes; Microwave integrated circuits; Microwave theory and techniques; Radiometers; Soil moisture; Temperature measurement; Voltage; Calibration; microwave radiometry; soil moisture;
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2006.886420